Les détails d'une méthode qui allie un RAG à des comportements d'Agent.
Leur benchmark est une optimisation de flux financiers et logistique à réaliser en interrogeant de la donnée dans une base relationnelle.
Concrètement, un plan des données nécessaires et de leurs relations est établie en amont puis les différentes requêtes sont exécutées.
Si des données sont manquantes, un nouveau plan peut être établie.
Ils affichent des résultats jusqu'à 2 fois meilleurs (60%) qu'un RAG simple sur le benchmark qu'ils ont créé.
Donner la représentation interne de la base de connaissance au modèle pour lui permettre de créer ses propres requêtes est une piste intéressante que j'avais déjà envisagé (mais repoussé faute de structuration correcte dans notre base de connaissances à l'époque)