1306 shaares
Un REX sur l'utilisation de LLMs en production.
Prompt Engineering:
- mettre l'accent sur les techniques de prompting (chain of thought etc)
- travailler sur la structure des données en entrée et en sortie
RAG:
- utiliser de la recherche hybride (vecteur + keyword)
- préférer le RAG au fine tuning pour la recherche de connaissance
- les long contextes des modèles ne rendront pas les RAG obsolètes
LLM Engineering:
- utiliser des workflow LLM qui mélangent prompt engineering et software engineering pour de meilleurs résultats
- faire générer des plans aux Agents afin d'améliorer la reproductibilité des résultats
- ne pas oublier de faire varier les méta-paramètres (temperature, top_p, etc)
- mettre en place des stratégie de cache
Test et évaluation:
- utiliser des tests unitaires avec des exemples réels
- évaluer les résultats avec d'autres LLM
- les évaluations apparaissent entre 5 et 10% du temps même sur des tâches simples