1306 shaares
Un article qui compare différentes bases de données vectorielles pour stocker les embeddings des LLMs et faire de la recherche sémantique.
A noter que si vous avez déjà Postgres ou Elasticsearch, les deux proposent un mode vectoriel.
Les bases de données dédiées aux vecteurs comme Qdrant ou Pinecone ne sont vraiment intéressantes que pour des gros volumes (> 100 000 vecteurs)