Daily Shaarli
April 21, 2024
Une méta-étude sur l'avancement de la recherche sur une architecture alternative à celle des Transformers.
State Space Model (SSM) est une architecture qui se veut plus économe en terme de puissance de calcul nécessaire pour l'entrainement et la génération.
Pour l'instant on en est toujours au début et rien de concrètement utilisable au vu des faibles performances mais c'est bien de garder un oeil la dessus pour le futur.
Une méta-étude sur les RAG.
Au programme les techniques pour chaque étape:
- pre-retrieval: query extension, data modification
- retrieval
- post-retrieval: re-ranking, filtering
- generation
- evaluation
OpenAI a ajouté l'inpainting dans ChatGPT Plus.
On peut maintenant sélectionner une zone et indiquer à ChatGPT de quelle manière on souhaiterait la modifier
FineWeb est un dataset crawlé depuis internet et épuré au maximum des contenus générés par d'autres IA.
Il contient 15 000 milliards de tokens et peut être utilisé pour entraîner des LLM depuis zéro.
Note: à priori vous ne voulez pas faire ça vous même mais plutôt fine tuner un modèle existant
RAGAS est un framework pour évaluer les RAG.
Il propose d'évaluer les deux aspects importants du RAG, à savoir:
- le retrieval: le RAG est-il capable de retrouver les documents pertinents?
- la génération: le RAG est-il capable de générer une réponse à la question?
Il y a plusieurs évaluateurs de disponible pour évaluer ces deux critères.
Pour tout ce qui est évaluation de la réponse à la question, RAGAS propose d'utiliser GPT4.
A noter aussi, le framework ARES
OpenAI a sorti une mise à jour de son API pour créer des Assistants.
On peut notamment utiliser jusqu'à 10000 fichiers dans leur RAG intégré et streamer les réponses.
Les Assistants permettent de développer très rapidement des POC d'Agents spécialisés en entreprise mais le côté boîte noir finit par se payer comme pour tout produit complètement fermé.