Une nouvelle technique qui comme le RAG, est utilisée pour permettre au LLM de répondre à des questions sur des données non présentes dans le corpus d'entrainement initial.
Pour ça, ils se basent sur un fine-tuning de millions de LoRa avec les documents qui seront sélectionnés au moment de l'inférence pour répondre à la question.
Ils annoncent des résultats impressionnants avec 95% de précision sur un cas d'usage Text-to-SQL vs 50% avec un RAG.
Cette méthode permet de remplacer un RAG avec une nouvelle technique d'entrainement mais aussi de réduire énormément les hallucinations.
Ils expliquent les détails de leur méthode dans ce papier de recherche: Banishing LLM Hallucinations Requires Rethinking Generalization
Si ça se concrétise c'est game changer pour l'écosystème LLM qui pourrait délaisser le RAG pour le Memory Tuning dans certains cas d'usage.
Une solution clé en main de Text-to-SQL, un RAG pour poser des questions en langage naturelle à sa base de données.
Une autre solution un peu plus mature: Dataherald
Les deux sont Open Source :-)
Un retour d'expérience très complet sur le système d'interrogation du datawarehouse de Pinterest avec du langage naturel.
Ils ont construit un RAG avec lequel les utilisateurs peuvent poser des questions en langage naturel. 40% du temps le résultat est bon du premier coup et le reste du temps les utilisateurs doivent affiner leur question en plusieurs messages. (comme toujours, l'IA reste un copilote)
Une idée intéressante, ils utilisent les questions les plus courantes sur une table pour générer un summary de la table et son utilité. Ce summary est ensuite vectorisé.
Ils utilisent OpenSearch (la fork d'Elasticsearch) comme moteur de recherche vectoriel notamment parce qu'ils peuvent utiliser le scoring boost.
L'article est une mine d'information et ils donnent tous leurs prompts!