Le nouveau modèle Text-to-Speech de OpenAI, Whisper Large v3, est capable de transcrire 2.5h d'audio en moins de 2 minutes
Un routeur HTTP basé sur un arbre et non des regex.
Les regex pour router des requêtes HTTP c'est vraiment bof, lent et très dur à maintenir. Ça reste cependant le choix par défaut pour des "framework" populaires comme Next.js.
Mistral 7B est disponible dans les workers de Cloudflare.
C'est une bonne nouvelle car ces worker sont distribués géographiquement et donc on peut espérer une latence d'inférence optimale n'importe ou dans le monde.
Un visualiseur et éditeur de fichier binaires
Un article qui parle de l'entrainement des LLMs.
Les LLMs sont d'abord entrainé un contenu de "basse qualité" équivalent à ~15 millions de livre.
Ensuite ils sont fine tuné une première fois avec des prompts/réponses de qualité, par exemple pour le dialogue.
La dernière étape est le RLHF, avec des réponses notés par des utilisateurs afin d'améliorer la dernière couche du modèle.
Valve sort une nouvelle version de Half-Life pour le 25e anniversaire :-)
Des nouvelles maps multi-joueurs et une mini campagne.
Tout est bon pour éviter HL3 ;p
Whoa dans cet article les chercheurs ont réussi à manipuler l'interface d'Android avec un LLM.
C'est dans l'émulateur mais c'est quand même impressionnant, ils sont capable de faire des tâches assez complexes comme vider l'historique de navigation de Chrome ou faire des recherches Google
Un modèle entrainé depuis LlaMa 2 qui est spécialisé dans l'utilisation d'outils, notamment d'API tierces.
C'est une alternative Open Source à OpenAI et ses assistants
Un article sur une méthode permettant d'améliorer la qualité des réponses dans un RAG.
Ils proposent notamment une méthode de prompting pour savoir quand il n'y a pas suffisament d'informations pour répondre:
Determine if there is Observation that SUPPORTS
or REFUTES a Claim, or if there is NOT ENOUGH
INFO.
Claim: The Gadsden flag was named by Christo-
pher Gadsden.
A: First, The Gadsden flag is named after politician
Christopher Gadsden. Second, there is no informa-
tion on who named the Gadsden flag. The answer
is NOT ENOUGH INFO.
Dans cet article, les auteurs proposent une autre manière de découper une tâche en sous tâche en permettant au LLM de "créer" une sous tâche en écrivant un token spécial.
La sous tâche est ensuite executé par un LLM "enfant" puis le résultat est ré-incorporé dans la tâche principale.
L'article contient de nombreux exemples.
Un article sur une méthode de prompt engineering pour réduire la latence d'un LLM en découpant une tâche en sous tâche puis en générant chaque partie indépendamment avant de merge le tout.
L'article est pleins d'exemples concrets en annexes
Un article sur la méthode du Tree of Thoughts pour résoudre des problèmes complexes avec un LLM.
Cet article a le mérite d'être compréhensible et de fournir des exemples concrets
Toute une liste d'articles sur le Chain Of Thought
Qu'est-ce qu'on rigole 😁
OpenChat est une version fine tuné de Mistral 7B qui offre des performances comparable à ChatGPT (version de mars).
Il est aussi plus performant que le modèle Grok de X.com qui fait 30 milliards de paramètres contre 7 milliards pour Mistral.
Plus d'info ici https://twitter.com/baptistejamin/status/1726571942319460381
Une solution pour utiliser d'autres LLMs en conservant les mêmes API/SDK que pour OpenAI.
Mistral et Claude 2 sont disponibles simplement en changeant l'URL de OpenAI par celle du proxy.
Sous le capot ça utilise les Cloudflare Worker pour réduire la latence au maximum.
Une lib AWS qui wrap toute la complexité pour déployer une application fullstack sur AWS.
Ça permet d'utiliser les services AWS comme EC2, S3, RDS (Postgres), de l'authentification et pleins d'autre chose simplement en instanciant des classes dans du code.
Une base de données orientée Document comme Mongo DB mais construite avec Postgres.
Un article qui évalue la performance des LLMs en fonction de l'endroit ou sont les informations dans le prompt.
Avec des prompts de plus en plus long, les LLMs ont tendance à "perdre" de l'information car la complexité du mécanisme d'attention est fonction du carré de la taille du prompt.
Les chercheurs ont trouvé que les informations placées au début et à la fin avaient plus de chance d'être retrouvées/utilisées.
C'est ce qui est placé au début du prompt qui a le plus d'importance pour le LLM, puis ce qui est placé à la fin et tout ce qui est au milieu
Microsoft lance aussi son service de création d'assistant à la "GPT" avec une intégration avec tous les outils Office 365.